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Abstract
The problem of Operational Modal Analysis (OMA) is a difficult and active area of research; this is especially
the case when loads on a structure, which can’t be measured, are harmonic and close to the resonance
frequencies of the structure, and if the structure is lightly damped. This situation can arise in many areas of
engineering, one key example is in the offshore energy industry where wave loads are commonly a narrowband
random loading and it is not easy to structurally alter the system so that none of the resonance frequencies
coincide with the dominant frequency of the loading. This paper presents a grey-box approach to the OMA
problem, where a physical model of the system dynamics is augmented using a technique from machine
learning. A Latent Force Model (LFM) is used to represent the loading acting on a structure, where the
forcing is assumed to be a Gaussian Process. The LFM is transformed into a state-space formulation, as
are the structural dynamics, and inference is performed simultaneously over the system parameters and the
hyperparameters of the Gaussian Process via a Markov-Chain Monte-Carlo method. This is shown to give
realistic distributions over the system parameters and produce a good prediction of the latent forces acting on
the system.

1 Introduction

Experimental modal analysis of linear systems is a well-established area of interest within structural dynamics.
Techniques for inferring the system parameters of linear systems where input and output data are present are
now mature and can be found in many good undergraduate textbooks, for example see [1]. In a wider sense,
the handling of second-order linear time-invariant (LTI) systems, of which physical dynamic systems are a
subset, is also well covered in the literature [2]. Unfortunately, for many structures which are encountered
by engineers, it is not possible to gather information regarding the input to the system — the forcing. This
is due to two important factors; first, it is not possible to place sensors in the load path on some structures
such as buildings undergoing base excitation from earthquakes. Secondly, it can be prohibitively expensive to
design and fit sensors which can withstand the environmental conditions in which the structure operates. This
is the case in the offshore energy industry where wave loading represents a phenomenon which is difficult to
measure and which produces an environment in which sensors must be very robust.

The current solution to this is to use techniques in Operational Modal Analysis (OMA), or output-only modal
analysis. Reviews of some techniques which may be used can be found in [3, 4]; however, a common problem
encountered is the identification of modal behaviour when the loading has significant harmonic components
which are close to the modes of the structure and when the structure is lightly damped. In this case it becomes
very difficult to separate the narrow peaks in the frequency domain due to the harmonic loads and those from
the resonances of the structure.



This paper makes use of a state-space form of the system, which is a common approach in OMA techniques,
and one that has been shown to be effective for state/input estimation [5, 6]. It has become commonplace
to use the Extended Kalman Filter (EKF) formulation where the parameters of the model are included as
additional states. In this way recursive estimates of the system parameters can be made within the Bayesian
filtering setting [7]. Lourens et. al [8] show a Kalman filter-based formulation for estimation of the states of
the structure and the forcing signal based on fixed parameter sets from a reduced order finite element (FE)
model.

This paper also aims to incorporate a novel use of the machine learning Latent Force Model (LFM) [9] in a
state space formulation [10], to allow efficient inference with a nonparametric prior over the forcing function.
Alongside this, Bayesian estimates of the system properties can be obtained using MCMC inference over
the state space model; this avoids the linearisation present in the EKF formulation for parameter estimates.
Being a Bayesian model of the full system, this methodology returns distributions over the parameters and
also the forcing function which give indications of the uncertainty in both the inputs and the parameters. This
uncertainty can be carried forward into further quantification analysis or used for heuristic assessment of
model quality.

The layout of the paper is as follows: the theoretical foundations of the model are laid out in Sections 2 to 4,
covering an introduction to Gaussian Processes, state-space modelling, and the Latent Force Model. The
application of this model to the problem of OMA is discussed in Section 5, including the need to constrain
the model with informative prior distributions. Section 6 presents results from use of this procedure on a
simulated dataset, and conclusions are made in Section 7.

2 Gaussian Process Regression

Gaussian Processes (GPs) [11, 12] are a popular nonparametric Bayesian machine learning technique. The
most interpretable explanation is as a distribution over functions, so each random draw from a GP is a function
from a functional family defined by the covariance function and specified by the data that has been used to
train the process. In this section we adopt notation from within the GP community which is in line with that
in [12], and which presents the general case for any GP, in the rest of the paper the notation will be consistent
with the usual practice in state-space models for clarity.

A Gaussian Process is fully defined in terms of its mean function m(x) (the mean is commonly assumed
to be zero and this convention is adopted here although addition of an explicit mean function is trivial)
and its covariance function k(x,x′), see Eq. (1). The covariance function allows the computation of the
covariance between any two data points xi and xj such that the element in the covariance matrix Kij is
given by k(xi,xj). This allows the covariance matrix for any finite number of data points to be calculated
analytically. Thus,

f(x) ∼ GP
(
m(x), k(x,x′)

)
(1)

Assuming there is a finite set of observed training data D with N observations of input-output pairs: D =
{xi, yi}Ni=1 where yi = f(xi) + ε, ε ∼ N

(
0 , σ2

n

)
. This equation states that there is some underlying

functional relationship f(x) where the observations y are corrupted by white Gaussian noise. In this case, the
GP distribution collapses to a Multivariate Normal distribution in N dimensions,

y ∼ N
(
0 , K (X,X) + σ2

nI
)

(2)

Where y is the vector of all observed noisy outputs and X the matrix of all observed inputs in D. When a
new input point x? or number of input points X? is observed, the covariance with the training data can be
calculated as a joint Gaussian formed between the training and test data,



[
y
f?

]
∼
(
0,

[
K(X,X) + σ2

nI K(X,X?)
K(X?, X) K(X?, X?)

])
. (3)

The predictive distribution over f? can be computed by considering the conditional distribution p (f? |x?, X,y).
Since the joint distribution, is Gaussian the conditional distribution can be computed analytically, where it
itself is a Gaussian, and the equations for the predictive mean and variance are given by,

f? ∼ N (E [f?] , V [f?]) (4a)

f? = k(x?, X)
[
K(X,X) + σ2

nI
]−1

y (4b)

V [f?] = k(x?,x?)− k(x?, X)
[
K(X,X) + σ2

nI
]−1

k(X,x?) (4c)

3 Bayesian State-Space Models

This paper focuses on linear Gaussian state-space models. The notation, from this section onwards, is x(t) is
used to represent the state vector, and y(t) the observations in the model for the continuous case or xt and yt
for the discrete time case. u(t) and its discrete time counterpart ut is a known input to the system at time t. It
is normally most convenient to form a continuous time state-space model since differential equations readily
convert into this form. The continuous time state-space transition is defined as,

dx(t)

dt
= Fx(t) +Gu(t) + Lw(t) (5)

Here, F is the continuous state transition matrix, G the continuous input matrix, and L the continuous time
process noise matrix when w(t) is a white noise process with spectral density q. Since observations of physical
systems happen in discrete time, it is usual that analysis is carried out with a discrete model; the observation
model is added at this point.

xt+1 = Axt +But +wt, (6a)

yt = Cxt + vt (6b)

with A being the discrete-time transition matrix and B the discrete-time input matrix. The process noise wt

is distributed N (0 , R). C is the observation matrix and the observation noise vt ∼ N (0 , R). Since the
solutions to models of this form are in discrete time it is necessary to convert a continuous time transition
model into its corresponding discrete time representation, i.e. find A and B from F and G. This procedure is
well documented; for example, see [2], and is shown here for completeness.

A = expm (F ∆t) (7a)

B = F−1 [(A− I)G] (7b)

expm is the matrix exponential operator; ∆t is the sampling period when discretising the continuous-time
model. The continuous-time noise process Lw(t) must also be discretised to perform inference over the
model.



Q =

∫ ∆t

0
Φ (∆t− τ)LqLTΦ (∆t− τ) dτ (8)

where, Φ(τ) = expm (Fτ). Once discretised, it is now possible to recover the filtering distributions
p (xt |y1:t) and the smoothing distributions p (xt |y1:T ), for a time point t in a data record that is T time
points long, using the Kalman filtering equations [13] and the Rauch-Tung-Striebel (RTS) smoother [14].

4 The Latent Force Approach

The Latent Force Model (LFM) [9, 15], is an approach for combining GPs with a mechanistic model where
the GP is used to represent the forcing experienced by the system. In this way, the output of the GP can
include modelling of the dynamics of a system. This model is a form of grey-box, where known physical
processes are augmented with machine learning technology to improve model performance. Of most interest,
from the point of view of structural dynamics is a second order LFM which has the familiar form of a P
degree of freedom linear dynamical system,

M ẍ+ Cẋ+Kx = F (9)

Additionally, in the LFM, F is defined as a set of independent Gaussian Processes in time,

p (F | t) =
P∏

p=1

fp =
P∏

p=1

N (0 , K (tp, tp))

fp ∼ GP
(
0, k(t, t′)

) (10)

where the covariance of each of the latent forces in time is defined by the covariance function k(t, t′) giving
rise to the covariance matrix Kfp,fp

which is the covariance between the latent forces at all points in time
K
(
tp, t

′
p

)
with tp being the vector of all time points when the output is observed. While this model has

produced some very promising results in modelling, the main challenge in implementing this form of model
is its computational complexity, which is O

(
N3P 3

)
, where N here is the length of the signal in time. This

issue can be addressed using sparse methodologies that have become popular within the GP literature, good
reviews can be found in [16, 17], more specifically, [18] shows how a multiple output GP, such as the one in
the LFM can be computed in a sparse manner, reducing the computational complexity from O

(
N3R3

)
to

O
(
N3R

)
using the partially independent training conditional (PITC) sparse approximation.

However, work by Hartikainen and Särkkä [19] has shown that, for GPs where the input is temporal and
the covariance function is stationary, the inference procedure can be converted into a linear time-invariant
(LTI) stochastic differential equation (SDE) which has a state-space formulation. This state space model
can be solved exactly, for certain cases, using a Kalman filter [13] and Rauch-Tung-Striebel (RTS) smoother
[14]. This methodology computes in O

(
NP 3

)
time which is a significant improvement given that, usually,

N � P .

This is the case if a GP is defined to have a Matérn covariance function [20] between any two points in time.
Since it is a stationary covariance, it is defined in terms of the absolute difference between the two input
points, r = |t− t′|. The Matérn class of covariance functions are governed by a smoothness parameter which
gives rise to a number of special cases. Setting ν = 1/2 gives rise to the exponential covariance function
which is equivalent to an Ornstein-Uhlenbeck process, and as ν →∞, the popular Squared Exponential (SE)
covariance function [12], which is also referred to as the Gaussian kernel, is recovered. Choosing values of
ν = p+ 1/2 for p as any non-negative integer, leads to simple expressions for Matérn covariance functions.
In the case with smoothness parameter ν = 3/2, the covariance function can be written as,



k(t, t′) =

(
1 +

√
3r

`

)
exp

(
−
√

3r

`

)
(11)

Following Hartikainen and Särkkä [19] and converting the covariance function into an LTI SDE requires the
spectral density, by taking the Fourier transform. Setting λ =

√
2ν
/
` and ν = p+ 1/2, in the Matérn class

of covariance functions it can be shown that,

S(ω) ∝
(
λ2 + ω2

)−(p+1)
. (12)

This can be factorised to recover the transfer function needed to convert to a state-space model, and the stable
part of that transfer function can be written down,

H (iω) = (λ+ iω)−(p+1) . (13)

An LTI SDE of order m has the form shown in Eq. (14), where f(t) is a random process of interest, a is some
set of coefficients, and w(t) is a white noise process which has a spectral density Sw(ω) = q,

dmf(t)

dtm
+ am−1

dm−1f(t)

dtm−1
+ . . .+ a1

df(t)

dt
+ a0f(t) = w(t) (14)

Rearranging this into a state-space model is possible by constructing a vector f(t) =
[
f(t)df(t)

dt . . . dm−1f(t)
dtm−1

]
which gives rise to a first-order vector Markov process,

df(t)
dt

= Ff(t) + Lw(t) (15)

where,

F =


0 1

. . . . . .
0 1

−a0 . . . −am−2 −am−1

 , L =


0
...
0
1

 (16)

The coefficients a0, . . . , am−1 (Eq. (16)) are the coefficients of the polynomial in the denominator of the
transfer function computed from the coefficients of the polynomial expansion of H(iω), h0, . . . , hm−1. The
spectral density of the white noise process Sw (ω) = q is equal to the constant from S (ω) (Eq. (12)), this is,

q =
2σ2

f π
1/2λ(2p+1)Γ (p+ 1)

Γ (p+ 1/2)
(17)

For the case of the Matérn covariance with ν = 3/2 as in Eq. (11) the equivalent state-space model is,

df(t)
dt

=

(
0 1
−λ2 −2λ

)
f(t) +

(
0
1

)
w(t) (18)

It is now possible to convert this continuous-time state-space model to a discrete time form and solve with a
Kalman filter and RTS-smoother [2]. Since the LFM model contains a temporal Gaussian process as the latent
function, and the mechanistic portion of the model has a simple state-space representation, it is natural to
form a state-space representation of the LFM and this was shown in [10].



In this paper, the methodology is shown for a single degree of freedom (SDOF) oscillator as the mechanistic
model, although it can be easily extended to the multi-degree of freedom (MDOF) case — or indeed systems
with different order ordinary differential equations (ODEs). First, the equation of motion is converted to its
state-space form, which is again a first-order vector Markov process.

Taking the SDOF equation of motion,

mẍ+ cẋ+ kx = F (19)

dividing through by m, and setting x1 = x, x2 = dx1
dt = ẋ in a state vector x, recovers a state-space

representation of the oscillator: [
ẋ
ẍ

]
=

(
0 1

− k
m − c

m

)[
x
ẋ

]
+

(
0
1
m

)
F (20)

The formulation shown in Eq. (20) is useful where there are known external inputs to the system F and the
effect of the forcing on the system is through the input matrix B = [0, −1/m]T. In the case of OMA these
inputs are unknown but can be considered as one or more additional latent states in the model. When the
transition for f is linear and described by the matrix Ff this system would be written,

ẋẍ
ḟ

 =

 0 1 0

− k
m − c

m
1
m

0 0 Ff

xẋ
f

+ Lw(t) (21)

The number of additional states that are introduced is dependent upon the model chosen for the transition of f ,
which is now also in first-order vector Markov process form. When using the LFM, it is clear from Eqs. (13)
and (16) that the choice of covariance function for the GP chosen to represent F will affect the number of
additional states required. Stein [21] suggests that Matérn kernels are a more appropriate choice of covariance
function, since the Squared Exponential imposes an unrealistic smoothness assumption. A choice of ν = 3/2
as in Eq. (11), is a common choice which appears to perform well, this leads to the addition of two states to
the model as in Eq. (18). This procedure leads to the full four-dimensional state space model,


ẋ
ẍ

ḟ

f̈

 =


0 1 0 0

− k
m − c

m
1
m 0

0 0 0 1
0 0 −λ2 −2λ



x
ẋ
f

ḟ

+ Lw(t) (22)

The model, including the noise Lw(t), must now be discretised to perform inference.

At this point, any observation model for the observed variable y can be adopted in the process; for instance,
if measuring displacement it is simply Eq. (23a), or if measuring acceleration it is Eq. (23b). These are
discrete-time observations, therefore, the observation matrices are multiplied by the discrete-time state values.
If other observation variables were available these could also be incorporated if a suitable observation model
could be formed. One has,

y =
[
1 0 0 0

] 
xt
ẋt
ft
ḟt

+ σ2
n. (23a)

y =
[
− k

m − c
m

1
m 0

] 
xt
ẋt
ft
ḟt

+ σ2
n. (23b)



Now, in possession of a model which can represent the system, attention turns to the problem of inference.
While methods such as expectation maximisation exist for this form of model [22], these maximum likelihood
solutions do not give information about the parameter uncertainties in the model. Instead, in this paper, a
fully Bayesian solution is adopted using Markov Chain Monte Carlo (MCMC) to perform inference over the
system parameters and the GP hyperparameters. MCMC is an inference method with guaranteed convergence
to the true posterior distribution of interest in the limit as the length of the chain tends to infinity [23]. The
parameter vector for this model, therefore, is θ =

[
m, k, c, σ2

f , `
]
. It is assumed that the process noise in the

dynamics is small (the system is well described by a linear dynamic model) and that the observation noise is
known.

The likelihood of the parameters in the model given the data observed for T time points, p (θ |y1:T ), is related
to a quantity called the energy function ϕT (θ) through a proportionality relationship.

p (θ |y1:T ) ∝ exp (−ϕT (θ)) . (24)

The energy function ϕT (θ) can be well approximated by the following recursion as the filter runs [24],

ϕt (θ) ' ϕt−1 (θ) +
1

2
log|2πSt(θ)|+ 1

2
vTt S

−1
t vt. (25)

vt and St are defined as,

vt = yt − C (Axt−1) , (26a)

St = C
(
APt−1A

T +Q
)
CT +R, (26b)

when Pt−1 is the state covariance at t− 1. The recursion for ϕT is started at ϕ0 = − log p (θ). Inference can
then be performed using the standard MCMC Metropolis random-walk algorithm, which for this problem is
shown in Algorithm 1.

Algorithm 1 MCMC Metropolis Random Walk for Parameter Inference in State-Space LFM
nb, ns ← Length of burn-in and desired number of samples
θ0 ←

{
m0, k0, c0, σ

2
f0, `0

}
. Set Start Points for Markov Chain

na ← 0, k ← 0 . Number of accepted θ, Number of Steps
p
(
θ′ |θk

)
= N (0 , Σp) . Proposal is random walk with diagonal matrix Σp

p (θ |y) ∝ exp {−ϕT (θ)} . Posterior Likelihood is Proportional to the Energy Function
while k < (nb + ns) do

Sample θ′ from p
(
θ′ |θk

)
Calculate ϕT

(
θ′
)

. Eq. (25)
log (α) = min

{
−ϕT

(
θ′
)

+ ϕT (θk) , 0
}

. Log Acceptance Ratio

θk+1 ←

{
θ′, na++ with probability α
θk, otherwise

k ← k + 1
end while

In this way, it is possible to generate samples from the true posterior of the parameter vector θ. These samples
can be used for further uncertainty quantification steps or can be used for model scrutiny. The strength of this
method, alongside recovering Bayesian posteriors over the system properties, is to recover, as a latent state of
the system, the time series of the forcing signal applied to the system.



5 Application to Operational Modal Analysis

It is clear from the formulation in Section 4 that the LFM model is directly applicable to the problem of
modal analysis. One of the strengths of the model presented here is the flexibility available due to the
nonparametric form of the forcing function, as defined by the GP. This flexibility also presents a problem
in the practical application of the model. As well as the normal system identification problems with the
scaling of the mass, stiffness, and damping parameters which lead to non-identifiability in the model when
the forcing level is unknown; the ability of the GP to model behaviour very similar to the dynamics (it is not
restricted to a Gaussian white noise form) means that it can mask dynamics in the system. For this reason, it
is necessary to place prior distributions over the system parameters. Prior distributions can also be placed
over the hyperparameters of the GP model to control their behaviour without breaking the Bayesian paradigm
within which the model has been set up.

In the current work, it is necessary to constrain at least one of the system parameters to a fixed value to
resolve these problems. In this case, it is assumed that one of the system parameters is known with certainty
a priori; this can be interpreted as a delta function prior on that parameter. The other prior distributions
can be elicited from knowledge of the system; this could be from a finite element (FE) model, where if
necessary, reduced-order modelling techniques can be employed. It should be noted, that when using MCMC
for inference, there is no restriction on the distribution of these priors, therefore, empirical distributions can be
used.

The choice of prior over the hyperparameters of the GP poses a more difficult problem as they are less
interpretable in a physical sense. It is possible to set a formal prior, for example p

(
σ2
f

)
= 1 which is a form

of improper prior. However, it can be helpful to set the prior over the signal variance σ2
f around the expected

variance of the loading and the length-scale ` based upon the expected frequency content of the loading.

6 Results

The results presented in this paper are from a simulated SDOF system response to a measured wave force
input, where the parameters of the model are chosen such that the natural frequency of the system is close to
the narrowband loading frequency. The wave loading data were measured as a part of the Christchurch Bay
project in the UK [25]. This case represents the initial work into the application of LFM state-space models
for OMA.

The parameters of the SDOF model are chosen to be: m = 2000 kg, k = 100 N m−1 and c = 5. These values
correspond to modal parameters ωn = 0.2 Hz and ζ = 0.0079. This presents a problem that is normally
difficult in a OMA setting, where the loading frequency is close to the resonance frequency of a lightly
damped mode.

All of the parameters of the model must take only positive values for them to be valid; therefore, the random
walk of the Markov-Chain must take place in a transformed space which ensures this. The values in the
transformed space are denoted (̂·), with the transformation defined as,

θ = log
{

exp
(
θ̂
)

+ 1
}

(27)

where θ is the parameter of interest. Prior probability distributions over the system parameters are chosen
with a random perturbation on the mean values in the system parameters to simulate priors elicited from an
incorrect model (e.g. an uncalibrated FE model). To constrain the problem it is assumed that the mass of the
system is known a priori and as such this is modelled with a delta prior for all tests.

Inference was performed as in Algorithm 1 with the burn-in set to 1× 103 samples and the total number of
samples as 1 × 105. Since the distributions may be non-Gaussian, and the distributions over the Gaussian



Figure 1: Plots showing the histograms and CDFs for the parameters being inferred when system parameters
are known. The mean values are shown with the dot-dash (·−) line in magenta, and the values estimated from
the empirical CDF with the dashed (−−) line in red.

Parameter True Value Prior Mean Posterior Mean CDF Estimate

σ2 ∗
f - - 8.64× 106 7.12× 106

` ∗ - 0.693 1.760 2.148

Table 1: Table showing results for the GP hyperparameters when the system parameters are known and fixed.
(∗ denotes that the true values for these parameters are unknown.)

Process hyperparameters are expected to be multimodal, the parameter estimates used to calculate the example
force are taken to be the values when the empirical cumulative density function (CDF) is equal to 0.5.

6.1 LFM With Known System Parameters

As an initial test the model is run with the system parameters fixed at the true values to demonstrate the ability
of the LFM to model the input to the system. The priors for this case are summarised below,

p
(
σ̂2
f

)
= 1, (28a)

p
(

ˆ̀
)

= N (0 , 2) , (28b)

p (m) = δ (2000) , (28c)

p (k) = δ (100) , (28d)

p (c) = δ (5) . (28e)

Using this procedure, samples from the posteriors over the signal variance and length-scale hyperparameters
were drawn. Plots of the PDF normalised histogram and CDFs are shown in Fig. 1, along with mean estimates
and CDF estimates of the values. A summary of the results is shown in Table 1. In GP modelling of the latent
force on the system, the signal variance of the forcing σ2

f is assumed unknown and a constant prior is used,
the length-scale parameter has a prior to discourage very long or short length-scales. Long length-scales will
cause the function in the forcing to become very smooth, the extreme of which is that it remains at the mean,



Figure 2: Smoother estimate of displacement and forcing signal on the system when m, k, and c are known.
True values are shown in red, mean estimates as a solid blue line and three standard deviation confidence in
the shaded regions

in this case the signal variance increases and the solution returned is one in which all the forcing is considered
noise. This, although a valid solution, is not helpful in the setting of modal analysis where retrieval of the
forcing time series adds a significant amount of valuable information. If the length-scale is allowed to become
very small, then the GP will attempt to model the noise in the signal as if it were its own process, this is also
clearly not a desirable situation. Since the distributions are skewed and multi-modal, the mean estimates
are not a good value to take and instead the CDF estimate is used to predict the forcing experienced by the
structure. Figure 2 shows the smoother prediction over the forcing as well as the observed state. As expected
the prediction over the displacements is modelled well with very small variance. Visually the prediction
over the forcing is good, to quantify the quality of the mean fit a normalised mean-squared error (NMSE) is
calculated to be 3.3%. This NMSE is calculated as,

NMSE =
100

Nσ2
y

N∑
i=1

(y?i − yi)
2 (29)

if y is the measured value and y? the predicted value. However, one of the strengths of this model is that in
addition to this there are also confidence intervals which represent the uncertainty in the forcing.



Figure 3: Plots showing the histograms and CDFs for the parameters being inferred in the full LFM OMA
procedure. The mean values are shown with the dot-dash (·−) line in magenta, and the values estimated from
the empirical CDF with the dashed (−−) line in red.

Parameter True Value Prior Mean Posterior Mean CDF Estimate

σ2 ∗
f - - 1.153× 107 9.154× 106

` ∗ - 0.693 2.283 2.443
k 100 105.9 (5.9%) 100.2 (0.2%) 101.4 (1.4%)
c 5 4.81 (-3.8%) 4.91 (-1.8%) 4.93 (-1.4%)

Table 2: Table showing results from the full LFM OMA model, values in brackets denote the percentage error
versus the true values. (∗ denotes that the true values for these parameters are unknown.)

6.2 OMA With The LFM

For the case of performing OMA with the GP LFM, the priors used in this model are shown below:

p
(
σ̂2
f

)
= 1, (30a)

p
(

ˆ̀
)

= N (0 , 2) , (30b)

p (m) = δ (2000) , (30c)

p
(
k̂
)

= N (105.9 , 2500) , (30d)

p (ĉ) = N (4.8 , 6.25) . (30e)



Figure 4: Smoother estimate of displacement and forcing signal from the LFM OMA on the system with true
values shown in red, mean estimates as a solid blue line and three standard deviation confidence in the shaded
regions

When running the model where only the mass is known, samples are generated from the posteriors over the GP
hyperparameters and the system parameters, k and c. Plots of the histograms and CDFs of the parameters are
shown in Fig. 3, and a summary of the results is shown in Table 2. It can be seen that the parameter estimates
of the system parameters are within 2% of the ground truth for both the mean values of the distributions and
the CDF estimates; this would indicate that the distributions are uni-modal and are not heavily skewed. When
the values from the CDF estimates are used to run the filter-smoother over the full dataset, the predictions in
Fig. 4 are made. The prediction over the force continues to be accurate with an NMSE on the mean of the
signal of 3.1%. This result is comparable to the results obtained when the system properties are known —
which is unexpected and encouraging. It follows that the estimates of the signal variance and length-scales are
similar for this model and the model with known system parameters. It is also reassuring that the values for
the GP hyperparameters are similar to those from the case where the system is known. This would suggest
that the solution is stable and that the use of priors has alleviated some of the identifiability issues arising
from the flexibility of the GP prior.

7 Conclusions

The work presented here has demonstrated through application to a simple system, a single-degree-of-freedom
oscillator, the benefit of using a Gaussian Process Latent Force Model in the task of Operational Modal
Analysis. Specifically, the state-space formulation of this model has allowed for efficient inference to be
made, and as such, Markov-Chain Monte-Carlo methods can be used to recover distributions over the system
parameters and the GP hyperparameters. It has been shown that these distributions can be used to elicit
accurate point estimates of the parameters and also of the loading, something that is normally not possible in
an OMA setting.

It is worth noting, however, that the tasks shown here have been performed on simulated data under a number
of significant assumptions. First it is assumed that the linear model of the system can represent the behaviour



well with low process noise. Secondly, the model is tested with a low level of artificial Gaussian white noise
added. Thirdly, there exist priors over the system parameters in which there is non-negligible probability
mass at the true values. Finally, it is assumed that the mass of the system is known accurately a priori; this is
required to constrain the unidentifiability inherent in the model. The unidentifiability stems from the scaling of
the forcing and the system parameters by the mass, that is, a system with the same response can be recovered
if all the system parameters are multiplied by some constant α and if the forcing magnitude is also scaled by
α. The flexibility of the GP as a prior over the forcing function only increases this issue. By fixing the mass
and placing informative priors over the system parameters, the model can be constrained in such a way that it
is more likely to converge to the true parameter posteriors.

Nevertheless, the authors believe that this represents a powerful grey-box approach to the problem of OMA. It
is clear that the model is capable of returning good estimates of the forcing, and the system parameters under
the constraints already discussed. The results presented here motivate further work into the use of GP LFM
models in the modal analysis setting; this includes the extension of the current model to the multi-degree of
freedom case. Additionally, in nonlinear systems where the structure of the nonlinearity is known (e.g. a cubic
stiffness term), this model is also applicable although the Kalman filtering formulation must be replaced with
a nonlinear counterpart, e.g. a particle filter. The last area of work is regarding the inference procedure; it is
appealing to replace the MCMC inference used in this paper with a more efficient method which could be
based on a state-augmentation approach or a two-step identification process where the system parameters and
forcing are iterated recursively.
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