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ABSTRACT
For re-assessment of ‘traditional’ industry asset manage-

ment methods the key technology is Structural Health Monitor-
ing (SHM) combined with the recent development within novel
Big Data technologies. The technologies support the digital
transformation of the industry with the purpose of cost reduc-
tion and increase of structural safety level. Today’s State-of-the-
Art methods encompass novel advanced analysis methods rang-
ing from linear and nonlinear system identification, virtual sens-
ing, Bayesian FEM updating, load calibration, quantification
and propagation of uncertainties and predictive maintenance.
Challenges approachable with the new methods cover structural
re-assessment analysis, Risk- and Reliability-Based Inspection
Planning (RBI), and new ground-breaking methods for damage
detection; many of which exploit recent advances in Machine
Learning and AI and the concept of the ‘True’ Digital Twin. In
this paper, a selection of the new disruptive technologies is pre-
sented along with a summary of the limitations of current ap-
proaches, leading to suggestions as to where tomorrows’ new
methods will emerge. New frameworks are suggested for the
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way forward for future R&D activities based on an Ontologi-
cal Approach, founded on a shared communication purpose and
the systemising/standardisation of the methods for performing
SHM. The Ontology Approach can be embedded in, or made
compatible with, organising (and decision-supporting) frame-
works based on Population-based SHM methods and extended
Probabilistic Risk Analysis. The new ideas also offer the poten-
tial benefit of gaining information/learning from a large pool of
structures (the population) over time and by transfer learning,
transferring missing information to individual structures where
less (or no) specific data are available.

Keywords: True Digital Twin (TDT), Structural Health
Monitoring (SHM), Linear and Nonlinear System Identifica-
tion, FEM Updating, Uncertainty Quantification, Risk- and
Reliability-Based Inspection Planning (RBI), Predictive Main-
tenance, Damage Detection, Big Data Analytics, Machine
Learning, Artificial Intelligence (AI), Ontological Approach,
Population-based SHM (PBSHM), Probabilistic Risk Analysis
(PRA).
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INTRODUCTION
There is an often-stated industry need to implement novel

digitalisation and automation methods for structural integrity
management of offshore structures; in fact, for infrastructure
generally.

In the near future, serious decisions will be needed for an
extensive number of existing oil and gas platforms; i.e., whether
to decommission or extend lifetime. Large investments will be
required to preserve a safe oil and gas production over the years
to come. Furthermore, it is known that offshore structures, over
many years in operation, may undergo changes; these could
range from variations in topside weights and platform extensions
to changes from subsidence, degradation of grouted connections
or the impact of un-expected extreme wave events. Such changes
may undermine the safety of the structures and increase their
susceptibility to failures. A digital transformation is required to
support the future needs for data-based decision making, for op-
timising investment and for securing the required safety levels.

One prevalent process to assess the structural integrity and
(potentially) extend structural lifetime while still maintaining or
increasing safety is to merge well-known Structural Health Mon-
itoring Systems (SHMS) with the True Digital Twin (TDT) con-
cept, as presented in [1]. Here the term ‘True’ is added to avoid
some confusion in the industry about what a digital twin covers.
In this presentation a True Digital Twin is defined as a virtual rep-
resentation of a system that spans its lifecycle, is updated from
real-time data representing the real physics, and uses simulation
and reasoning to help decision-making.

SHMS and TDT both offer capabilities for long-term in-
tegrity assurance and minimisation of maintenance costs, simul-
taneously reducing uncertainties and increasing safety levels.
The proposed TDT extends other approaches, by incorporating
advanced methods for model updating, quantifying model uncer-
tainties and adding a direct link to Risk- and Reliability-Based
Inspection Planning (RBI) methods, e.g. [2]. The method briefly
presented in the section “Current Framework” has been applied
for more than 15 years on a large number of offshore structures
and has a proven record in enhancing information for structural
integrity assessment. A detailed overview of the concept pre-
sented at five levels (L1 to L5) of application is provided by [3].
The current framework can be applied for most of the structural
integrity assessments commonly required today. However, there
will be requirements for implementing even more advanced tech-
nologies for system assessments in the future, where behaviours
may be outside the validation range of some of today’s technolo-
gies. For example, most common applied methods for system
identification currently assume linear and stationary system be-
haviour. New methods for increasing the validation range of the
technology are used will be presented in the “Tomorrow’s Meth-
ods” section. Examples could be systems with nonlinear and/or
nonstationary system behaviour as may be observed for, e.g.,
damaged structures [4–6], and other types of structures e.g. like

bridge supports with non-linear friction. For such cases, special
considerations and technologies are required.

Apart from extending the validation range of today’s meth-
ods, the new methods also offer opportunities for new feasibil-
ities. In addition, to facilitate more integrated solutions than
that presented in the 5 level (L1 to L5) concept for creating a
TDT [3], more powerful methods for quantification of uncertain-
ties are presented in [4]. The extended ideas for quantification
and propagation of uncertainties offer direct potential for im-
proving today’s Risk- and Reliability-Based Inspection Planning
methods. In section “Tomorrow’s Methods”, new technologies
for more advanced damage detection methods based on state-of-
the-art machine learning are also presented (see also [5]).

The possibilities are briefly described in section “Tomor-
row’s Methods” and further explored in section “The Future –
New Frameworks”. In the first of those sections, several newly
emerging technologies for load prediction, system identification
and damage identification are discussed. The methods solve
some of the challenges of today’s methods. Although these ideas
are often founded in advanced machine learning and data analyt-
ics, the optimal strategy for problem solving will, in most cases,
depend on the proper use of priori known physics; the combi-
nation of data-based and physics-based predictive models is the
objective of the new field of physics-informed machine learning,
which includes the construction of grey-box models [4–7]. The
section also discusses transfer learning, a principled approach to
making inferences about systems or structures for which very
little data are measured; the power of the method lies in improv-
ing these inferences using richer sources of data from other (but
similar) structures [8–10]. Transfer learning is a key technol-
ogy within the new framework of Population-Based SHM (PB-
SHM) [11–14]; this is a very recent approach to asset manage-
ment, which leverages data from all the members of a population
of structures to strengthen diagnostic or prognostic capability for
individual members/structures. PBSHM is further discussed in
the section “The Future - New Frameworks”. Also presented
here is the concept of an Ontological Approach [15], as the or-
ganising principle for a more systematic approach to communi-
cation and sharing of knowledge, and possibly the standardisa-
tion of future implementations, for digitalisation and automation
of processes for structural integrity assessment. Finally, a new
framework, exploiting an extended probabilistic approach for
risk- and reliability-based inspection planning is presented [16].

In summary, the purpose of this study is to introduce new
technologies which enable more detailed insight into structural
integrity by unlocking the potential of data-driven information
by applying new and advanced methods of Big Data Analytics
and exploiting information gained/learned from a larger pool of
structures over time with the purpose of transferring missing in-
formation from a large measured population of structures to spe-
cific individuals. The new framework is also a proposal for a
systematisation/standardisation approach for the future common
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R&D on the topic.
New technologies will be discussed, which not only cover

offshore structures, but in time can be transferred to all other en-
gineering disciplines, facilitating more efficiently, resilient, and
sustainable design, enabling maintenance without compromising
safety and functionality. The present paper presents technology
facilitating offshore oil and gas production, which society still
needs for the global transition to renewable energies, thus sup-
porting sustainability; safety for both personnel and the environ-
ment. The technology is general and today transfer to disciplines
such as wind turbines [17], bridges, high rise buildings, etc. is
ongoing.

CURRENT FRAMEWORK
The TDT is an updated structural analysis model that cap-

tures the real-life behaviour of offshore structures in real-time.
The TDT provides an advanced state-of-the-art methodology
to facilitate coupling between the actual physical structure (the
physical twin), it’s environment and its digital twin.

An overview of the current Ramboll method is shown in Fig.
1, [3]. The process can be split into two primary stages. The first
stage is the calibration of a Finite Element (FE) model against
measured data from the structure of interest. The second stage
is where decisions as to the maintenance and operation of the
structure are made.

FIGURE 1. Flow diagram giving a top-level view of the current Ram-
boll method; the process of data-to-decision can be clearly seen.

In the creation of a TDT, a cost-benefit analysis is essential; a
five level (L1 to L5) approach is suggested, see Fig. 2. Each
level contributes/creates additional value. Following each level
L1 to L4, a Decision Gate (DG) is applied to assess whether pro-
ceeding to the next level will create value to the operator or not.
It is not possible to define generally what the criteria of those
gates should be since the cost-benefit for a given system is in-
herently tied to the business aims of the operator. The definition
of the decision gates must be carried out in the scoping stage of
the project. It will quantify both the expected costs of advancing
through the levels of the TDT and consider the expected benefit
of that advancement in terms of the safety and the profitability of
the asset.

The levels are only described here in principle. For more detailed
information, references are stated in each section.

FIGURE 2. The five levels L1 to L5 for creating a TDT.

Level 1 - Screening and diagnostics (DG-1)
Before deciding on the strategy for digital twin updates and

improvements, it is essential to evaluate the performance of the
existing digital twin by quantifying its ability to predict the ac-
tual structural behaviour. This knowledge enables a diagnosis
and creates the basis for deciding whether or not to continue
to the next level, i.e. a decision gate must be passed. Lin-
ear system identification - also called Operational Modal Anal-
ysis (OMA) [18] - is performed to generate a “fingerprint” of
the structural characteristics in terms of the modal parameters of
the structure. One method of system identification is Stochastic
Sub-space Identification (SSI method). The modal parameters
are natural frequencies (Fig. 3), mode shapes (Fig. 4), and the
associated damping parameters. Typically, the modal parameters
are identified based on accelerometer measurements. The finger-
print is evaluated against the predicted modal parameters of the
FE model; if measured and predicted modal parameters differ, it
is an indication that the FE model needs to be updated. If nat-
ural frequencies and/or mode shapes do not match, the correct
force/stress distribution in a structure cannot be used for predict-
ing neither nominal stresses, nor hotspot stresses. In this case
a decision at DG-1 whether to continue the analysis at Level 2
must be taken. Updating of the modal parameters in Level 2 in
case of a poor match is of outmost importance as the updating
of the loading in Level 3 is based on updating predicted nominal
stresses in the FE model against measured nominal stresses, i.e.
the stress distribution in the FE model must be correct before any
load calibration is performed in Level 3.

Level 2 - FE Model Updating (DG-2)
The objective of FE model updating is generally to correct

masses and stiffnesses (among other parameters) to minimise the
discrepancies in the natural frequencies and modes shapes be-
tween predicted and measured values. The FE model is updated
based on a sensitivity analysis (see Fig. 5), and prior information
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FIGURE 3. Stabilisation diagram from Stochastic Sub-space Identi-
fication (SSI) with identification of stable natural frequencies (red).

FIGURE 4. Example of comparison of measured and predicted mode
shapes (red: predicted, blue:measured). In this case there is a poor
match and consequently the analysis must proceed to Level 2 for up-
dating the FE model.

in the form of, for example, a Bayesian parameter estimation ap-
proach. Discrepancies in mode shapes are quantified in terms
of the Modal Assurance Criterion (MAC) [19], where a MAC
of 1.0 indicates a perfect match between a measured and pre-
dicted mode shape. Updating of the modal parameters ensures
that the static, quasi-static and dynamic characteristics of the pre-
diction model correctly represent the forces and stress flows in
the real structure for a given loading. The value created by up-
dated the FE model lies in the improvement in the safety level
of the structure compared to the errant FE model that may mis-
represent forces and stress in the real structure. However, this
update does not ensure that the wave loading is correctly mod-
elled. Typically, load modelling according to applicable code
and standards will result in a conservative design. If the conser-
vative design based on the updated model at Level 2 meets the
customer need, then the decision can be taken at decision gate

DG-2 to stop the analysis at Level 2. In case there is a need for
further value creation for example in terms of lifetime extension
the decision can be made to continue the analysis in Level 3 for
updating also the loading. Level 1 and Level 2 can also support
root cause analysis.

FIGURE 5. Results from an initial sensitivity analysis as basis for a
following Bayesian parameter estimator FE model updating.

FIGURE 6. Updated mode shape with True Digital Twin (Blue: Mode
shape from updated FE model) and the real-world counterpart i.e., the
“Physical Twin” (Red: Measured mode shape).
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Level 3 - Load Calibration (DG-3)
The performance of the TDT is not solely related to its abil-

ity to represent the structural static, quasi-static and dynamic
characteristics accurately; the load modelling part is of equal
concern when evaluating the performance of a TDT for fatigue
prediction. To achieve a TDT for fatigue re-assessment purposes
or lifetime extension, it is vital that the wave load model accu-
rately represents the real physical conditions. Wave load cal-
ibration requires long-term measurement data - typically from
wave radars - to represent the loading part, and in some cases
strain gauges to supplement measured global platform displace-
ments generated from accelerometer data. In order to ensure a
proper load calibration, it is essential that the load calibration is
performed in a way consistent with the method adopted for the
fatigue re-assessment analysis which follows. Wave load cali-
bration can be performed by calibrating the wave load model pa-
rameters e.g., the Cd and Cm values in Morison’s equation [20].
Typically, load modelling parameters from codes and standards
yield conservative fatigue predictions. The value created in Level
3 Load calibration is typically potential lifetime extension exten-
sion and at the same time an increase in the safety of the struc-
ture. At Level 3, decision gate DG-3, it can be decided to stop
any further analysis dependent on the operators needs. A deci-
sion to continue to Level 4 for further value creation in terms
of quantifying the real safety level of the structure and/or opti-
mization of inspection plan requires that probabilistic methods
are adopted.

FIGURE 7. Wave load calibration based on calibration to measured
and predicted stress range history curves.

Level 4 - Quantification of Uncertainties & RBI (DG-4)
At Level 4, the question of how much the prediction mod-

els have improved can be answered in terms of quantifying the
uncertainties of the updated model performance against physi-
cal measurements. The benefit of continuing to Level 4 is typ-

ically only relevant for operators which have needs for reduc-
tion of cost for inspection-planning activities and/or just a need
for quantifying the real safety of the structure. If the inspec-
tion planning is based on Risk- and Reliability-Based Inspection
Planning (RBI) methods, the model uncertainties can be quan-
tified in terms of Bias (typically calibrated to Bias=1.0) and the
associated Coefficient of Variation (CoV) values. The assess-
ment of the uncertainties should be consistent with the particular
RBI approach adopted by the operator e.g. [2]. A number of un-
certainties need to be quantified from data and models, ranging
from measurement uncertainties and model uncertainties to en-
vironmental variations like year-to-year sea state variations, etc.
The value creation from a reduction of the uncertainties in terms
of reduced CoV values is a reduction in the number of hot spots
to be inspected and an increase in the time between inspections,
i.e. a reduction in the number of surveys to be performed in the
lifetime of the structure. A reduction in the uncertainties typ-
ically results in a significant reduction of the inspection costs,
and, in some cases, structures have been verified to be inspec-
tion free in the remaining lifetime of the structure, i.e. a con-
siderable reduction of OPEX costs. This is exemplified in Fig.
8, where the wave load model of the TDT has been calibrated
against measurements. The value creation in Level 4 is in the
significant reduction of the uncertainties; as the uncertainties are
closely related to the safety, the safety level is improved and now
verified by measurements. Based on the vast experience from
many projects, a benefit already at the design phase of projects
can be offered by the methods, resulting in a reduction in the
CAPEX costs. For methods on how to harvest the benefits from
a SHM system even at the design phase for a new structure, ref-
erence is made to [17]. The method opens for design of new
structures adapting a set of reduced partial coefficients. The re-
sult is cost reductions for steel material, while still maintaining
the same level of safety or an even increase in the safety level. A
decision at DG-4 can be taken whether to proceed to Level 5 for
continuing the measurements by a permanent SHM system with
the potential of further value creation in terms of higher safety
level and for providing information supporting critical decision
making in case of for example occurrence of un-expected wave
events.

Level 5 - Continuous Measurement - Damage Detection
Several methods exist for detecting changes. Some may be

useful for specific applications for damage detection, but no ap-
proach for robust and general damage detection methods exists
as of today. Recently a major R&D project on advanced dam-
age detection based on Big Data Analytics, including Machine
Learning/AI technologies in a probabilistic framework, has been
funded [21]. The project is a spin-off of years of research per-
formed by many parts on the topics related to the observation of
abnormal waves in the Danish North Sea [22].
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FIGURE 8. Quantification of uncertainties for input to RBI.

Realising the need for advanced damage detection can be
exemplified by imagining a storm occurring during the night in
which an extreme wave event has occurred, and the structural in-
tegrity of the platform might be compromised. In the morning
the operator needs sufficient reliable information to support crit-
ical decision making on whether it is safe to continue operation,
or the platform must be shut down and evacuated due to critical
damage.

The main principles are illustrated in Fig. 9, [23]. Starting
from the top left with the physical structure in the real world,
which in traditional engineering is modelled by a FE model. The
new idea is to introduce not only one probabilistic model pre-
dicting the present real-world behaviour, but to generate a large
number of competing probabilistic models, which constantly will
compete in representing not only the present system behavior, but
also any future system behavior which could occur including any
future damaged conditions.

Monte Carlo simulations for all competing systems are per-
formed for generating scenarios to be stored in a Big Data
database. The data from the simulated scenarios are fed into the
Big Data Analytics for forming cluster representations as basis
for the later quick and reliable automatic identification of dam-

ages that may occur in the physical measured data. At the same
time, continuing from the top left in Fig. 9, data from observa-
tions are stored in another database consisting of real-world mea-
sured data. Based on the measured data, the competing models
are continuously updated to TDT’s, as required. In addition, the
measured data is fed into the Big Data Analytics. By combining
information from observations with the cluster representations,
probabilities can be assigned to each of the competing models for
representing the measured data. In the event of an un-expected
extreme wave occurring, damage detection can quickly be per-
formed by ranking the competing models by their probabilities
to determine the most likely damaged condition.

FIGURE 9. Main principle of ongoing R&D for more advanced dam-
age detection based on a combination of utilisation of simulated data
from competing models for millions of years with continuous measured
data.

TOMORROW’S METHODS
The purpose of this section is to highlight technologies that

have been developed in recent years by the authors, in the context
of other State-of-The-Art work, which has the potential to ex-
tend and improve aspects of the current framework, with a view
to increased autonomy, insight and robustness. Each of these de-
velopments is built upon increasingly data-centric ideas; in other
words, they consider how to make use of most effectively, and
learn from, data collected from a structure. The methodologies
span the related areas of statistical modelling, machine learning
and artificial intelligence. The core aim of integrating new tech-
nology into an asset management setting is to increase knowl-
edge, in the sense that the operator can make more informed de-
cisions about the usage and maintenance of a structure.

Considering how one might realise an increased recovery
of information, three possible routes are considered, which each
show promise in different areas of the current framework. The
three points of discussion are: the use of grey-box modelling to
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combine physical insight with machine learning tools, the appli-
cation of Bayesian techniques to embed prior engineering knowl-
edge; and the potential of transfer learning for Population-Based
SHM. With these methodologies, two different tasks relevant to
asset management are investigated. The first is to improve the
estimation of the loading experienced by a given structure; if
successful, this is a route to reducing uncertainty in the fatigue
damage calculations. The second task is that of online damage
detection. A framework for damage detection will follow the
principles as presented in Rytter’s Hierarchy [24, 25].

First, a grey-box modelling paradigm is introduced. A grey-
box is a combination of white- and black-box methods. A white-
box is constructed based entirely on physical laws governing the
system, e.g., Morison equation or an FE model. A white-box ap-
proach retain high levels of interpretability, high user confidence
and the ability to extrapolate to new conditions (subject to the
validated space of the model). However, white-boxes are limited
by the expressivity of the physical model and have no capacity
to learn behaviour that is not explicitly included (e.g. knowl-
edge gaps). A black-box philosophy sets aside the desire for the
model to reflect the physics in a meaningful way, in favour of
a more flexible set of modelling methods with the capacity to
learn from observed data. A black-box sacrifices the benefits of
interpretability in return for improved predictive performance by
discovering functional structures from data.

With respect to the grey-box approach: by the combination
of physical components from the white-box and data-based com-
ponents from the black-box, it is hypothesised that the benefits of
each could be realised while limiting the respective drawbacks of
each approach. In other words, there is a potential of realising the
“best of both worlds”.

Another important concept used in several recent develop-
ments is that of a Bayesian framework for modelling of uncer-
tainties [26]. As engineers seek to construct statistical models of
structures of interest, it is essential to consider how meaningful
information about uncertainty might be included. There are sev-
eral of approaches to this quantification, both probabilistic and
imprecise. In the name of brevity, the complete array of methods
will not all be discussed [27], instead, some reasoning for adopt-
ing a Bayesian approach, in a number of the examples, is offered.
Two major strengths of the Bayesian methodology motivate its
use in this work. Firstly, it is concerned with determining the dis-
tributions over variables of interest, by virtue of recovering these
distributions it works well as a component within larger analy-
ses where one may wish to propagate uncertainty. Secondly, it
provides a rigorous mathematical framework for the incorpora-
tion of engineering intuition via description of this knowledge as
probability distributions in the prior. These descriptions are flex-
ible and powerful enough to express confidence (e.g. in a time
domain) in a manner that might aid algorithms in quantifying a
level of belief.

One such example of a Bayesian method which is used in

this work is that of the Gaussian process (GP) [28, 29]. The GP
is a tool which allows an engineer to learn a distribution over
functions [29]. An example pertinent to this paper is to contrast a
deterministic viewpoint of learning the loading time-history with
the Bayesian alternative of determining the distribution of possi-
ble loads a structure has experienced. To do so, the GP expresses
some prior belief about the form of the function via the kernel
which is then combined with observations of the inputs and out-
puts of the function of interest to build a posterior distribution
over the functions. The mathematical tools to do this are ap-
plication of Bayes Rule and identities for multivariate Gaussian
distributions, for details see [29].

Load Estimation: The loading experienced by a given
structure is intrinsically linked to the fatigue life of that struc-
ture. As such, by quantifying and reducing uncertainty regarding
loading, confidence in the fatigue performance of assets can be
improved. Considering the load estimation problem, two dif-
ferent solutions are considered in this work: the first is a direct
modelling of the nonlinear dynamics of the waves using a grey-
box model – a Gaussian process NARX model; the second a joint
input-state-parameter model of the dynamics of the system and
the loads themselves.

In Pitchforth et al. [7] an approach for grey-box modelling
of wave loading is proposed. The form of the grey-box consid-
ered is that of a combination of Morison’s equation [20] and the
GP-NARX as a nonparametric learner. The NARX formulation
is a particular version of a GP model specifically for time series,
where lagged versions of the inputs and outputs, i.e. past real-
isations, are used as additional inputs to the model. This form
is a nonlinear version of the well-known Auto-Regressive (AR)
model with eXogeneous inputs. Results compare a fully black-
box approach (only the GP-NARX model), and a fully white-
box approach (only the Morison equation [20]) with a combina-
tion of the two. Importantly, this grey-box combination provides
the benefits of the flexible GP-NARX machine learner in terms
of predictive accuracy provides the robustness of the physics-
inspired model of Morison’s equation when data are sparsely
available. The work demonstrates the power of grey-box ap-
proaches in terms of the model’s ability to extrapolate, that is
to make meaningful and trustworthy predictions outside the do-
main where data have been previously observed.

An alternative approach towards load estimation was shown
in [4, 30], where a Gaussian Process Latent Force Model (GP-
LFM) is used to perform joint input-state-parameter inference
over a dynamic system. The problem of joint input-state infer-
ence is well covered in the literature [31, 32], and efforts have
been made towards combined input-state-parameter estimation
[33, 34]. In these closely linked problems, dynamicists attempt
to infer the internal states of a system (its displacements and ve-
locities) in combination with its inputs – i.e. loads – and in some
cases parameters, such as modal properties. Two notable features
are present in [4, 30]: first, the unmeasured load is modelled as
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a GP which can be inferred through a linear state-space model;
second that the distributions over unknown parameters of the sys-
tem are also recovered. In the context of the current paper, the
approach of [4, 30] provides valuable information regarding the
load that a structure has experienced – intrinsically linked to fa-
tigue damage accrual – and combines this with the process of
OMA. In future, this idea may provide a more holistic approach
to structural identification for offshore structures in operation, as
learning the properties of that system is now coupled with iden-
tifying the actual loads that the structure has experienced. In
Fig. 10, the example of recovered force from the method on a
dynamic system is shown. It can be seen that the approach ex-
hibits excellent recovery of the true force (shown in red) when
compared to the mean of the estimate (shown in dark blue); note
that these lines overlap, obscuring the blue line because of the
very close fit). The shaded area in the figure indicates that the
model has recovered these forces with high certainty. It shall be
noted that not only the loading is recovered in the process, also
the other FE model parameters are updated at the same time.

FIGURE 10. Load recovery using the Gaussian process latent force
model [4].

This subsection has discussed two possible technologies for
estimation of loads on offshore structures; each adopts a grey-
box approach combining physical insight with flexible machine
learning tools. Estimation of the loading time-history would be
a key component in a digital twin system for structures, such as
those offshore, which operate in harsh and variable environments
with and end of life commonly dictated by the fatigue life of the
system. The feature of a more advanced load estimation via a
True Digital Twin [1] is a mechanism for reducing uncertainty
about the condition of the structure and enabling predictive main-
tenance. The methods presented here avoid the shortcomings of
some of todays’ system identification methods in that both non-
linear and nonstationary system now can be accounted for. In
addition, it shall be noted that the presented formulation allows

for performing the levels L1 to L4 as one integrated analysis,
where system identification, Bayesian FEM updating, load cal-
ibration and quantification of uncertainties are all performed at
the same time in one integrated analysis. It facilitates for much
more detailed information for detection of for example knowl-
edge gaps (e.g. outside of validation range issue) and uncertainty
propagation and hence increased knowledge about the safety of
the structure.

Damage Detection: Two possible solutions are considered
with respect to the damage detection challenges presented by
Rytter’s hierarchy [24, 25]. The challenges being the detection,
localisation, classification, quantification and prognosis of dam-
age on a system [35]. Both solutions address an essential chal-
lenge in damage detection which is especially important for off-
shore systems. The challenge being the lack of availability of
data relating to the structure while in a damaged state. Therefore,
the proposed approaches circumvent the requirement for exten-
sive damage-state data at the start of operation by either learning
adaptively online in a semi-supervised manner [5] or by trans-
ferring knowledge between structures [8–10]. The combination
of these two methodologies may well be possible and beneficial
and is the subject of ongoing research.

Within machine learning, it is possible to characterise learn-
ing methods in terms of the available information which might be
exploited by that learner. For supervised learning the training is
performed based on both observed inputs and observed outputs.
The learning consists of labelling and recognising data in classes
or groups related to different normal operational and damaged
conditions. The disadvantage of supervised learning can be a
long training period and the requirement that only conditions
that have been part of the training can be recognised. Unsuper-
vised learning is defined as a situation in which data is available
without any labels. The methods are dominated by two-class
classification tasks (either undamaged or damaged) tasks based
on outlier analysis. The advantage of the unsupervised learning
methods is that it requires only a limited learning period/data and
that there is no requirement for labelling of data by manual in-
tervention. Another advantage of unsupervised learning is that
the method can detect damaged conditions that have not been
part of the training. The obvious thing then is to combine the
two methods in semi-supervised learning. The advantage of a
semi-supervised approach being that information from a few la-
bels can improve performance with a very large dataset. In prac-
tice when a learner has been in operation, it is expected that all
normal occurring operational conditions have been labelled and
from here onwards any unforeseen changes of the structure can
be efficiently detected and identified. In general, semi-supervised
methods will outperform supervised and unsupervised methods,
see [36] for greater detail. In [5], the weakest possible semi-
supervision is employed, whereby unsupervised clusters are as-
signed meaningful labels following inspection of a data point in
that cluster; this may be referred to as label propagation; there
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are however many other approaches that could be taken [37].
In [5], a promising solution for damage detection where

damage data are not available is presented. The proposed
model is based upon a Dirichlet Process Mixture of Gaussians
(DPGMM). Intuitively, the model tries to learn a set of mul-
tivariate Gaussian (Normal) distributions that capture the dis-
tribution of the extracted features. It is a clustering approach
that seeks to group similar data together that are in some way
“close” in the feature space. Since this model is probabilistic,
the data are grouped by considering their membership of one of
a set of probability distributions, in this case multivariate Gaus-
sians. Formally, the model attempts to model the density of all
the data as a joint mixture density; that is, a weighted set of Gaus-
sians. To learn such a model, one must determine two things, first
the parameters (mean and covariances) of the individual compo-
nents, second the mixing proportions – what fraction of the data
does each component represent. The interesting feature of the
DPGMM is that the mixture is comprised of an infinite set of
Gaussians and thus can represent any arbitrary density. In a dam-
age detection setting, one assigns physical meaning to each of
these different components – which are called the clusters – such
that data can be grouped into interpretable sets. In a very simple
example, one might have two clusters one relating to the normal
condition and one relating to a damage condition. The contribu-
tion of [5] was to present an online application of the DPGMM in
a damage detection setting where new clusters could be initiated
online; practically, this meant that data from structural conditions
which had not been observed before could be grouped into new
clusters.

The DPGMM provides a powerful approach for a damage
detection system which might learn and adapt online, remov-
ing the need for extensive data collection from a range of con-
ditions before operation. A further improvement of the DPGMM
method could be to combine it with transfer learning in Popula-
tion Based SHM (PBSHM). PBSHM is a new branch of SHM
which seeks to make use of information between structures to
improve the efficiency of SHM tasks - for a thorough introduc-
tion see [11–14]. One of the key tools in the PBSHM arsenal is
transfer learning, specifically domain adaptation [8–10]. The aim
of domain adaptation is to map data from two dissimilar datasets
onto a common space, such that a single classifier might be used
with improved performance. It is especially powerful when a
user is data rich in one dataset (the source domain) and lacks in-
formation in another (the target domain). Consider an example
in the offshore context, a company has monitored a structure for
a number of years and has collected extensive data from a range
of operating and damage conditions. Now a new structure has
had a monitoring system installed for only one month and little
is known about how damage may affect the features of interest.
In transfer learning, even if the structures are different (e.g. one
is monopile and one is a jacket) the two datasets might be com-
bined to allow better predictions on the new structure. [8] shows

that this may even be possible between data from an FE model
and the physical structure, see Fig. 11. The domain adaptation
approach is therefore, a powerful tool for life-cycle management
offshore. The reason is that it allows users to leverage more value
from monitoring data by transferring the knowledge contained
in that data between structures. This increased value will be an
important component of a cost-effective damage detection pro-
gramme, especially for operators with many structures, which
may be expensive to instrument. An even larger benefit from
PBSM could be achieved in case operators/owners across indus-
tries could agree on sharing data for the benefit of all.

FIGURE 11. To illustrate the power of transfer learning: the left fig-
ure shows samples of the first three natural frequencies from a noise-
contaminated FE model of a laboratory three-storey structures, in an
undamaged and a damaged condition and the right shows experimen-
tal measurements from the structure with sparse information. Note the
large mismatch in scales between left and the right figure; the FE model
has been deliberately created with the wrong geometry and materials in
order to test the algorithm. The example show how experience/learning
detection of damage from other type of structure in principle can be
transferred to a different type of structure with limited measured data.

To briefly conclude this section, an overview of several new
developments related to monitoring and management of offshore
structures has been given. Two main tasks have been highlighted
as challenges which could be addressed in the near future; these
were to estimate the unmeasured loading time-history a structure
has experienced, with a view to improving fatigue life predictions
and to provide methods for real-time damage detection which
learn and react online, providing information about the current
health state of the structure. Two different grey-box models for
load estimation were shown, one where a machine learner (GP-
NARX) is combined with the well-known Morison’s equation
and one where the dynamics of the structure are coupled with
a machine learning estimate of the forcing. The presented meth-

9 Copyright © 2021 by ASME



FIGURE 12. shows the frequency data mapped into a common fea-
ture space using domain adaptation [8]; in this domain, a classifier
trained on the model data is 90% accurate on the measured data.

ods overcome some of the issues with today’s methods, which on
occasion could be used outside of their validation range without
evidence that this is permissible or safe. For damage detection,
lack of availability of damage-state data at “Day 0” was high-
lighted as a challenge for current methodologies. The DPGMM
method was proposed to address this via a semi-supervised ap-
proach with algorithms that are self-training, recognising and la-
belling conditions with no human intervention (automatically).
The idea is that during a training period, the algorithm has iden-
tified and clustered most normally-occurring conditions. Any
changes not covering normal operational conditions will from
then on be detected and identified.

In addition to this, transfer learning - specifically domain
adaptation - was discussed as a technology to move information
between structures and – via the framework of PBSHM – max-
imise value across multiple (possibly disparate) systems.

THE FUTURE - NEW FRAMEWORKS
As the last section has clearly shown, a number of new pre-

dictive modelling tools have emerged recently, which offer the
promise of revolutionising diagnostic and prognostic capability
across many engineering sectors, not least offshore. In most
cases, to optimally exploit their full power, the algorithms will
need to be embedded in some overall decision framework ca-
pable of transforming data into asset management decisions. In
order to automate the data-to-decision process as far as possible,
holistic systems with minimal human intervention are the goal.
As in the case of ‘methods’, the recent past has seen the emer-

gence of candidate ‘frameworks’ which could be implemented
independently or carefully combined. Three such possibilities
will be discussed here: Ontologies, Probabilistic Risk Assess-
ment and Population-Based SHM (PBSHM).

Ontologies: A key requirement of any SHM framework will
be the acquisition and storage of data and its refinement into
knowledge. Part of that process of refinement will involve the
‘methods’ discussed earlier. Acquisition and storage of data is
the domain of database technology; however, acquisition and
storage of knowledge is another matter. Doing this ‘by hand’
given the huge expanse of data and information in the literature
and distributed in the World Wide Web, is simply not feasible. In
order to automate this process, ontologies can be used. Ontolo-
gies do not have a universally-accepted definition; a simple def-
inition, capturing the properties important for this paper is that
they are ‘systems developed to organise knowledge . . . coupled
with a view on the “world” (or domain of interest) that has mo-
tivated it’ [38]. In general, ontologies are used to store, share,
describe, process, and reuse domain knowledge in specific appli-
cation domains. They can take a variety of forms, but as specified
in [39], they will necessarily ‘. . . include a vocabulary of terms,
and some specification of their meaning. This includes defini-
tions and an indication of how concepts are inter-related which
collectively impose a structure on the domain and constrain the
possible interpretations of terms.’ It is the vocabulary here, and
the broad concept of inter-relation, which extends the idea of the
ontology well beyond a ‘simple’ database. Ontologies are usu-
ally encoded using dedicated languages e.g. OWL [40].

FIGURE 13. The five SHM ontology superclasses and some of their
subclasses.

FIGURE 14. SHM “methods” subclass [15].
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Regardless of the language that they are expressed in, all ontolo-
gies are comprised of the following components:

1. Individuals (instances): represent objects in the domain of
interest.

2. Classes (concepts): sets of individuals (instances). These
can be defined using formal descriptions stating precisely
the requirements for class membership. Classes may be or-
ganised into a superclass-subclass hierarchy, which is also
known as a taxonomy.

3. Properties: are characteristics that individuals in the domain
of interest can have.

4. Relations: describe the various ways that individuals and
classes are related.

5. Axioms: are statements that are asserted to be true in the do-
main described and comprise the overall theory of the par-
ticular application.

No comprehensive ontologies for the purposes of SHM cur-
rently exist (although an ontology associated with physics-based
modelling [41] has been proposed and following the principle
of reusability central to the ontology field, this could be incor-
porated into more comprehensive structures, like those proposed
here, as part of the model-based SHM component of an SHM
ontology for example.) The barest outline of how an SHM on-
tology might be constructed is given in [15]; even so, the main
schematic is too complex to include here. Instead, the main
classes are given in Fig. 13 for illustration.

Population of the ontology is a particular problem. Of
course, this may be carried out by hand, using OWL (or the on-
tology language of choice); however, this is very restricted. It is
more efficient and effective if the ontology can be populated au-
tomatically. Fortunately, there has been a body of research based
on automatic extraction of knowledge for ontologies from the in-
ternet [42]. An initial ontology can be populated by hand to help
focus the search.

Population-Based SHM (PBSHM). PBSHM has already ap-
peared in this paper in the context of the ‘methods’ section. This
fact is because PBSHM depends critically on transfer learning al-
gorithms which allow one to improve health inferences on struc-
tures with little or no data by using data from other structures
within some population. However, PBSHM itself is a ‘frame-
work’ in which algorithms operate and is much more than a
playground for one algorithm. The basic papers on the subject
are [11–14], although the subject is in its infancy and is develop-
ing currently at a substantial rate.

Critical issues in PBSHM concern when it is appropriate to
attempt transfer learning at all; this is important because of a
phenomenon known as negative transfer, in which an attempt to
transfer between two problems which are not sufficiently simi-
lar will cause a degradation in predictive capability on the target
structure. This problem is at the root of the basic formulation

of PBSHM, and is addressed as follows. The structures of in-
terest, in the population of interest, are converted to ‘points’ in
an abstract space of structures. The key point is that the space
of structures should be a metric space; i.e., it should be possible
to define a ‘distance’ between two given structures. This dis-
tance is then used as a measure of similarity between structures;
such that, if two structures are ‘close’ in the metric, then they are
structurally similar and transfer may be attempted.

The two main steps in finding which ‘point’ in the abstract
space corresponds to a given structure are, first to create an irre-
ducible element (IE) model, then to convert this to an attributed
graph (AG). The IE models are quite simple conceptually; one
represents the structure of interest by substructures which are
structurally or dynamically basic, like beams, plates or shells.
This representation is then converted into a graph, where each
IE is assigned a vertex (node) in the graph; two nodes are then
joined by an edge if their corresponding elements are joined
physically in the real structure. At this level the graph only repre-
sents the topology of the structure; i.e., its connectedness. How-
ever, one can assign attributes to each node – the geometrical and
material properties of the element. Suppose an element had the
type [plate], then the geometrical attributes associated with the
element would be the length, width and thickness; the material
properties might be Young’s modulus, Poisson’s ratio etc. The at-
tributes are assembled into a vector, which is then associated with
the node in the graph; the properties of joints between elements
are stored as attribute vectors associated with edges. This is all
rather abstract, and many details are omitted (see [12]); however,
it provides a usable space of structures – the space of attributed
graphs is a metric space as desired – and thus a means of assess-
ing the similarity of structures. If this sounds implausible, the
reader can consult [43], in which the similarities of several real
bridges are assessed; in this case, bridges of similar types are
identified effectively; a suspension bridge is paired with another
suspension bridge etc (see Fig. 15). A very recent paper – in an
aerospace rather than civil context – shows that the AG models of
two aircraft wings of different types provide guidance on which
data should be used for optimal transfer [44]; in fact, an SHM
classifier trained on one wing is shown (via transfer learning) to
give 100% accuracy on the other wing.

The wing problem raises another interesting problem in PB-
SHM, which is that, although similarity assessment is based on
the structures themselves, transfer is conducted on SHM feature
data measured on the structures. This observation means that
the AG/IE models of the structures have to be stored in some
database, in which their associated feature data also live. Within
this large framework, some ‘methods’ will compare the similar-
ity of structures; if transfer is indicated, this will be accomplished
by operating on the structures’ feature data using other methods.
As one might imagine, such a database/framework will need to
be quite sophisticated; first steps towards construction of such an
object are discussed in [45, 46].
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FIGURE 15. Illustration of how the PBSHM metric has allowed sim-
ilarity measures between real bridge structures. The matrix shows the
similarity scores between IE/AG models of a set of eight bridges. The
score is normalised to unity for a perfect match (the diagonal); note the
high scores for the pairs of beam and slab bridges, suspension bridges
and truss bridges.

Ultimately, the PBSHM database/framework is intended to
incorporate an ontology to store knowledge associated with the
SHM context, in order to support the transfer of inferences be-
tween structures. Even at this level of complexity, an important
ingredient is missing, a PBSHM-based asset management should
provide decision support. The necessary ingredients are intended
to come from a third ‘framework’ – probabilistic risk analysis.

Probabilistic Risk Analysis (PRA): Originated decades ago
in the nuclear energy industry. It allows risk-informed deci-
sions on design and operation of safety-critical or high-value
assets. Preliminary work on a risk-based decision framework
has already combined elements of PRA with the SHM paradigm
[16], using probabilistic graphical models. Optimal decisions are
found by maximising expected utility. The use of utility is an im-
portant aspect of the framework; rather than simply assessing the
probability that the structure is in some damage-state, the utility
weights that probability by a consequence or cost measure. This
action is clearly what is needed by an optimal decision process;
one should not conduct expensive inspections or maintenance if
the system has confidently detected inconsequential damage.

The PRA methodology has been designed using a multi-
level structural representation - structure, sub-structure, com-
ponent - with faults occurring at the component level. The
extension to PBSHM will move to whole populations. In
fact, population-based PRA generalises the concept of SHM of
‘systems-of-systems’. Consider SHM of an offshore wind farm;
this entails conducting SHM of an individual turbine, then sub-

structures within the turbine, like the tower or blade. If one con-
siders the drivetrain as a structure, one might wish to detect faults
at the bearing or gearbox: i.e., component level. It is immedi-
ately clear that asset management of a company’s entire inven-
tory of farms will require a ‘systems-of-systems-of-systems . . .
of-systems’ approach or SN.

Although the three ‘frameworks’ in this section have been
presented separately, there is no bar to combining the features
of all three into an overarching system. One can build a PB-
SHM core, in which an ontology is fused to the underlying
database/schema, in such a way that knowledge in the ontology
can help match structures in order to maximise the possibility of
successful transfer. In this system, a decision-support interface
based on PRA and fueled by the diagnostics/prognostics from
the PBSHM core can be added. In terms of creating an industry
standard, an ontology could be created to share knowledge be-
tween users in different companies and across platforms; this is
what ontologies are designed for. In fact, multiple users could
also contribute their data to the PBSHM core of a shared sys-
tem; although this may seem implausible from the point of view
of data security and company confidentiality, it is probably not;
new ideas like differential privacy [47], offer possibilities. A dif-
ferential privacy system could allow users to improve inferences
on their structures, using PBSHM, while keeping the actual data
from other structures invisible.

CONCLUSION
In the present paper, the framework for today’s, tomorrow’s

and for the future implementation of novel state-of-the-art tech-
nologies for digitalisation and automation for the purposes of
structural integrity management has been presented.

The framework of today based on the creation of a True Dig-
ital Twin has been presented in terms of a five-level approach
(L1- L5), in which value is created at each level as a differ-
entiated service dependent on an owner’s or operator’s special
needs. The State-of-The-Art methods of today encompass novel
advanced analysis methods ranging over linear and nonlinear
system identification, virtual sensing, Bayesian FEM updating,
load calibration, quantification and propagation of uncertainties,
Risk- and Reliability-Based Inspection Planning (RBI) and dam-
age detection; many of which exploit recent development in ma-
chine learning and the concept of the True Digital Twin.

The value created ranges from verification of prediction
model against measurement for improving the safety level of
facilities to root-cause analysis, lifetime extension, predictive
maintenance, reduction of OPEX costs in terms of reduction
of costs for inspections, reduction of CAPEX costs already at
the design phase of a new structure, to continuously monitor of
changes (damage detection) and monitoring of accumulated fa-
tigue (fatigue counter).

Today’s methods have some shortcomings when it comes
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to nonlinear and/or nonstationary system behaviours, which can
be relevant for some structural systems. For such systems the
behaviour may be outside of the validation range of parts of
the current technologies. In “Tomorrow’s methods” a range of
additional machine learning and AI-based technologies are in-
troduced for extending the validation range of current methods
among other benefits. Four initiatives are introduced.

The first advance is the use of grey-box modelling; this
combines the best of the two worlds of the white-box (main-
taining physical insight) and the black-box with the ability to
learn/extend the validation range and improve prediction where
the physical model fails. A grey-box formulation is presented as
tomorrow’s technology for performing OMA for both nonlinear
and nonstationary systems.

The second advance is the application of Bayesian tech-
niques with the benefit of embedding prior engineering knowl-
edge for e.g., FEM updating purposes. Engineering knowl-
edge including the incorporation of uncertainties, can be em-
bedded as probability distributions. Introducing a Bayesian
method based on a Gaussian Process (GP) formulation, com-
bined with a NARX strategy (GP-NARX), allows for perform-
ing all of the Levels L1 to L4 in one integrated analysis. The
presented method, in one integrated analysis, performs non-
linear/nonstationary system identification (OMA), as well as
Bayesian FEM updating, load calibration and by the introduc-
tion of the Gaussian Process formulation also quantifies the un-
certainties in an even more detailed format than the today’s struc-
tural reliability methods.

The third advance is the introduction of two novel meth-
ods for damage detection. First a method for advanced dam-
age detection based on Big Data Analytics is presented. The
main idea is based on the concept of introduction of competing
models, which constantly compete in representing the real world
data from physical measurements both for un-damaged and dam-
aged conditions. Machine learning on million of years of simu-
lated data in a virtual world representation by the TDT concept is
combined with physical measurements for quick damage detec-
tion in case of occurrence of un-expected extreme wave events.
Second a classification/clustering approach for advanced dam-
age detection based on a Dirichlet Process Mixture of Gaussians
(DPGMM) is presented. Both the advantages and disadvantages
of unsupervised and supervised learning are described, result-
ing in a final proposal for a semisupervised non-parametric clus-
tering approach. The advantage of a semi-supervised approach
is that the algorithms are selftraining, recognising and labelling
conditions with no human intervention (automatically). The idea
is that, the algorithm has identified and clustered most normal-
occurring conditions during a training period. Any changes not
covering normal operational conditions will from then on be de-
tected.

The fourth final advance is presented as a Population-based
SHM (PBSHM) approach with the potential benefit of acquiring

and then transferring information within a large pool of measured
structures and transferring knowledge and experience from years
of measured data from many other structures to individual struc-
tures for which there are limited measured data.

An example presented in the section “FUTURE – NEW
FRAMEWORKS”, shows the potential for a huge benefit in
combining the DPGMM approach with the PBSHM approach.
Adapting information from the measurement of a large pool of
structures and combining with measurements from a new struc-
ture with limited data, shows that even with limited information
one will then be able to make early diagnostics even with access
to limited data from an individual structure.

In order to gain optimal benefit from PBSHM a common
framework across operators, organisations and engineers etc., is
proposed. An ontological approach is suggested and described
as a basis for a more systematic, guided, standardised process for
the community to collectively enhance structural performance; a
common way in the future to gather information and drive the
green transition to renewables and societal sustainability. New
practices are essential, not only for oil & gas but for all disci-
plines.
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