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Jens Kristian Jgrsboe, Jimmy Andersen, Christian Riber, and
Burcin Temel McKenna, Ramboll, discuss various carbon capture
technologies and their advantages and disadvantages.

projects ranging from towering skyscrapers

to intricate road networks. However, the
production of cement is emission-intensive and has
a large environmental footprint. Despite significant
progress, challenges remain in the widespread
decarbonisation of cement production, where
technical feasibility, cost considerations, and policy
support are among the key factors. This article sheds
light on the challenges and opportunities in achieving
a more sustainable cement industry.

Ramboll is a global engineering consultancy with
18 000 experts based around the world. The carbon
capture team has conducted over 125 studies ranging
from feasibility to FEED, Balance-of-plant, and EPCM
studies including projects being built in various
geographies. Ramboll provides services for the whole

ement production is the foundation of global
construction, indispensable for infrastructure

value chain of CCUS: carbon capture, liquefaction,
transport via rail or pipelines, utilisation into methanol
or aviation fuel, storage and regulatory advisory.

Options for the mitigation of greenhouse
gas emissions

The deployment of carbon capture in the cement
industry is a significant area of interest when

it comes to reducing greenhouse gas (GHG)
emissions. According to the Global Cement and
Concrete Association, cement production is
responsible for approximately 7% of the global
carbon dioxide (CO,) emissions. This is due to

the calcination process, which releases CO, from
limestone (calcium carbonate) during clinker
production. The production of clinker also requires
high temperatures and combustion of fuels to
provide energy for the process. Therefore, the






emissions from cement production come primarily

from the process and fuel consumption for the

calcination process.
There are various options available to cement
producers to reduce their environmental impact:

» Energy efficiency improvements: Implementing
energy-efficient technologies and practices
can reduce the energy consumption of clinker
production, thereby lowering CO, emissions. This
includes optimising kiln operations, improving
heat recovery systems, and minimising energy
waste.

> Alternative fuels (AF): Substituting traditional
fossil fuels with AF such as biomass,
waste-derived fuels, and non-recyclable
plastics can reduce the CO, emissions from
clinker production. These AF often have some
biogenic carbon content and can help lower
the overall fossil carbon footprint of the cement
manufacturing process.

» Lower carbon products: Blending clinker with
supplementary cementitious materials such as
fly ash or slag can reduce the amount of clinker
needed in cement production.

» Oxyfuel combustion: The cement kiln and/or
calciner can be designed to use pure oxygen
instead of air. This results in a flue gas stream with
higher CO, concentration, making it easier to
capture.

Gas with CO, Carbon capture technologies

» Carbon capture and storage (CCS): This method
captures CO, from the flue gases emitted
during cement production. Carbon capture
technologies are more widely applicable and can
be retrofitted to existing cement plants.

While there are diverse options available, there are
limitations to these approaches. For example, the
energy efficiency of the cement plant has typically
been optimised, and further optimisation or
improvements may require considerable investments.
AF vary in terms of their availability and quality,

and the infrastructure for supplying them must be
established.

Substituting clinker with supplementary materials
can affect the performance and quality of the final
cement product, potentially impacting properties
such as strength, durability, and setting time. The
availability and cost of supplementary materials, such
as fly ash and slag, can vary regionally, limiting their
widespread adoption as clinker substitutes.

These general improvement approaches reduce
emissions but there will always be inherent release of
CO, during the calcination process.

Oxyfuel combustion aims to produce a highly
concentrated CO, stream by using pure oxygen
for the combustion process. However, the false air
ingress in the cement plant will pollute the highly
concentrated CO, product and an added carbon

High purity CO, capture unit might be needed.
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CCS implementation can be
expensive, and the scale of
deployment needed to achieve
significant emission reductions
in the cement industry may
pose logistical and economic
challenges. Finding suitable
storage sites for captured CO,

Figure 1. Overview of carbon capture technologies.
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generation, steel, biogas plants, and refineries.
Currently, there is a wide array of carbon capture
technologies available. The high CO, concentration
in the flue gas from cement production is an
advantage as the carbon capture technologies
benefit from higher CO, concentrations. Another
advantage is that cement plants are large CO,
point sources, which allows for economies of scale,
thereby reducing the capital investment per ton of
CO,. Moreover, the cement plants are operated at
a steady base load thereby incurring low variation of
CO, emissions. The location of cement plants can,
however, be challenging for CO, infrastructure.

An overview of the carbon capture technologies is
given in Figure 1.

Each carbon capture technology has advantages
and challenges, including energy consumption, cost,
scalability, and environmental impact. The carbon
capture technologies apply
either a chemical or physical
separation principle.
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advantage of their complementary strengths and

to obtain higher CO, purity. However, there are
limited references for these processes for large-scale
application.

Currently, the amine-based absorption process is
the most mature carbon capture technology with
references for large-scale application. In this process,
the flue gas, containing CO,, is directed through an
absorber column, and contacted with an alkaline
solution denoted as solvent. The CO, reacts and
is absorbed into the solvent. The solvent with the
absorbed CO, is regenerated in a stripping column,
typically conducted at elevated temperatures. Once
the CO, is released, the regenerated solvent is
returned to the absorber column to capture more
CO, from the flue gas. The released CO, can then
be compressed and transported for storage or
utilisation.
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Cryogenic carbon capture

Cryogenic carbon capture is a physical separation
process that separates CO, by cooling the gas
stream to very low temperatures, typically between
-100 and -135°C. The process diagram of the
cryogenic separation is illustrated in Figure 2. In the
flow diagram, the water content of the gas stream
is removed by condensation. The gas stream then
undergoes compression and subsequent cooling
to achieve conditions where CO, desublimates,
becoming solid from its gas phase, and the CO, can
then be removed.

Due to costs associated with compression of the
flue gas, the cryogenic carbon capture process
greatly benefits from high CO, concentrations in
the treated flue gas such as in the case for cement
production. The cryogenic separation process may
also be coupled with pressure swing adsorption,
membrane separation or oxyfuel to increase the CO,
concentration prior to the cryogenic separation.

Cryogenic carbon capture has several advantages
including high capture rate of above 95%, high
CO, purity, and, relatively, energy requirements are
potentially low compared to other carbon capture
technologies. Cryogenic carbon capture is a tail-end
technology that only requires access to sufficient
power and cooling, and a low energy penalty can be
ensured with heat integration. However, it also has
challenges, such as high capital costs associated with
the cryogenic equipment and has limited references
in large-scale application.

Hot potassium carbonate (HPC)
carbon capture

The HPC solution reacts with CO, in the flue gas,
forming potassium bicarbonate (KHCO,) when
water is present. The HPC process is an example of
a chemical absorption process for carbon capture.
The chemical absorption process includes an
absorption column and a regeneration column.

The flow diagram, excluding the regeneration vessel,
is illustrated in Figure 3.

HPC offers high CO, capture efficiency (removal
rates typically exceeding 90%), low thermal energy
requirements, and can handle fluctuating CO,
concentrations and flow rates in industrial flue gases.
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The potassium carbonate solution has lower affinity
towards CO, compared to other solvents and
therefore requires an elevated partial pressure of CO,
in the absorber column. The elevated partial pressure
of CO, is obtained by compression of the flue gas to
obtain a CO, partial pressure of approximately 1 bar.
The compression of the flue gas requires electrical
energy, however a lot of the thermal energy needed
in the desorption process can be recuperated from
the compression step as shown in Figure 3.

The HPC process benefits from the high
CO, concentrations in the flue gas from
cement production. Considering a typical CO,
concentration of 20%, the flue gas must undergo
compression to only 5 bar compared to 7 — 8 bar
for solid fuel combustion plants such as biomass or
waste-to-energy facilities. Further, HPC does not
need much steam, which cement plants do not have.
The HPC is therefore a good fit for carbon capture
from cement plants.

However, challenges associated with hot potassium
carbonate carbon capture include the corrosive
nature of potassium carbonate solutions, reduced
reaction speed over time, and the need for efficient
heat integration and solvent regeneration to
minimise energy consumption and operating costs.
Ongoing research and development efforts focus
on addressing these challenges and improving
the overall performance and cost-effectiveness of
the technology. The maturity of the technology is
the main drawback, as the flue gas compression
has not been displayed or confirmed/verified for
post-combustion applications.

Optimisation of the amine-based
carbon capture process

Amine-based carbon capture is widely used

and offers several advantages such as high CO,
capture, scalability making it suitable for large-scale
applications, and compatibility with existing industrial
infrastructure, easing retrofitting to existing plants.
However, challenges associated with amine-based
carbon capture include a high energy consumption
for solvent regeneration, solvent degradation, and
potential corrosion issues. Efforts continue to focus
on reducing the energy requirements of the process,
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Figure 5. Optimisation of amine-based carbon capture.
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espedially reboiler duty, and improving the solvent
resistance towards degradation.

One approach to improve amine-based
carbon capture is to use alternative amines or
blends of amines. The traditional amines include
monoethanolamine (MEA), diethanolamine (DEA),
and methyldiethanolamine (MDEA). In recent times,
amine blends have been developed such as AMP-PZ
(CESAR1) and AMP-DMSO. Furthermore, there are
advanced supplier designed amines commercially
available: MHI (KS-1™, KS-21™), OASE®blue, ACC™
S21 & S26, APBS-CDRMax®, CANSOLV DC-103, or
Econamine FG PlusSM. The development of these
new amine solvents has resulted in 10— 20% lower
energy consumption, more stable solvents, and less
make-up/reclaiming needed. However, these new
solvents are more expensive and careful emission
control may be required depending on flue gas
NOx levels, and the temperature and pressure in the
absorber column.

Another approach to reduce the energy
requirement of the carbon capture process is internal
carbon capture improvements. There are various
approaches for optimising the flow diagram of carbon
capture. Some improvements include absorber
intercooling (AIC), lean vapour compression (LVC),
or mechanical recompression systems (MVR). A flow
diagram of the amine-based carbon capture with AIC
and LVC is illustrated in Figure 4. By using AIC, the
solvent can absorb more CO,, consequently reducing
the reboiler duty. The LVC configuration flashes the
hot regenerated solvent from the reboiler to provide
additional stripping steam. This reduces the amount of
necessary reboiler duty, but it comes at the expense of
COMPIessor power Costs.

Amine-based carbon capture at cement plants faces
different challenges such as the availability of steam,
and the cleaning and cooling of the flue gas to make
it suitable for carbon capture. The need for steam can
be reduced by optimisation of the heat integration
and by implementation of heat pumps and steam
fans. The amine-based carbon capture can thereby be
considered with varying complexity. Different cases of
the amine-based carbon capture process are shown in
Figure 5, where the expected reduction in the reboiler
duty is included.

To supply the carbon capture plant with heat,
waste heat can be recovered from both calciner flue
gas and clinker cooler gas through large waste heat
recovery (WHR) units, also called boiler units. WHR
allows for some steam production to be used directly
in the carbon capture reboiler. It can also be used
to upgrade hot water with heat pumps and steam
fans to provide a significant amount of steam for the
reboiler. The potential energy available in a standard
cement kiln process allows for approximately 30 —40%
of the energy needed to be delivered as steam, and
40 — 100% of the energy needed to be delivered
as hot water. By optimisation of the amine-based
carbon capture process and using WHR, it is thereby
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almost possible to cover the heat demand for the
amine-based carbon capture facility without investing
in a dedicated steam producing system.

Carbon capture in the cement industry
According to IEA, the cement sector is the
third-largest industrial energy consumer and the
second-largest industrial CO, emitter globally. To get
on track with the Net Zero Scenario, emissions from
cement production must fall by an average of 3%
annually by 2030. Carbon capture is crucial for the
cement industry as it offers a pathway to mitigate
the significant GHG emissions associated with its
production. Currently, there are many projects working
on improving ways to capture carbon emissions from
the cement industry. Some methods, like cryogenic
and membrane technologies, are being developed,
but they have not been tested on the scale needed
for cement production yet. Oxyfuel technology is
also receiving a lot of attention, although it requires

a larger interaction with the main process than
post-combustion technologies. Finally, there are also
other carbon capture technologies only focusing on
the calcination part of cement production, which may
become feasible.

There are various technologies available for carbon
capture and some may see implementation on a
large-scale in the future, but the carbon capture
technology with the most large-scale references is
currently the amine-based capture technology. This
technology is commercially available, can be retrofitted
to an existing cement plant, and there are various
options for heat integration to reduce the operating
costs of the technology. By adopting carbon capture
and through the continued innovation of emissions
reduction technologies, the cement industry can
make significant strides towards decarbonisation and
sustainable production of cement. m
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